RuNormy.RU
Untitled Page
RuNormy.RU
Untitled Page
"ГОСТ Р 57700.6-2017. Национальный стандарт Российской Федерации. Численное моделирование физических процессов. Термины и определения в области бессеточных методов численного моделирования"
Скачать текст бесплатно в формате MS Word
Поделитесь данным материалом с друзьями:

Скачать
Утвержден и введен в действие
Приказом Федерального
агентства по техническому
регулированию и метрологии
от 25 мая 2017 г. N 430-ст

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ В ОБЛАСТИ
БЕССЕТОЧНЫХ МЕТОДОВ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ

Numerical modeling of physical processes.
Terms and definitions for numerical meshless methods

ГОСТ Р 57700.6-2017

Группа П80

ОКС 01.040.01
07.020
07.030

Дата введения
1 мая 2018 года

Предисловие

1 РАЗРАБОТАН Открытым акционерным обществом "Т-Платформы" (ОАО "Т-Платформы")
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 700 "Математическое моделирование и высокопроизводительные вычислительные технологии"
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 25 мая 2017 г. N 430-ст
4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение

Установленные в стандарте термины расположены в систематизированном порядке, отражающем систему понятий данной области знания.
Для каждого понятия установлен один стандартизованный термин.
Приведенные определения можно при необходимости изменить, вводя в них произвольные признаки, раскрывая значения используемых в них терминов, указывая объекты, относящиеся к определенному понятию. Изменения не должны нарушать объем и содержание понятий, определенных в данном стандарте.
В стандарте приведены иноязычные эквиваленты стандартизованных терминов на английском (en) языке.
В стандарте приведен алфавитный указатель терминов на русском языке.
Стандартизованные термины набраны полужирным шрифтом, их краткие формы - светлым, а синонимы - курсивом.

1 Область применения

Настоящий стандарт устанавливает термины и определения понятий в области бессеточных методов численного моделирования.
Термины, установленные настоящим стандартом, обязательны для применения во всех видах документации и литературы (по данной научно-технической отрасли), входящих в сферу работ по стандартизации и (или) использующих результаты этих работ.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ 2.052-2015 Единая система конструкторской документации. Электронная модель изделия. Общие положения
ГОСТ Р ИСО/МЭК 12207-2010 Информационная технология. Системная и программная инженерия. Процессы жизненного цикла программных средств
ГОСТ Р ИСО/МЭК 15288-2005 Информационная технология. Системная инженерия. Процессы жизненного цикла систем
Р 50.1.075-2011 Разработка стандартов на термины и определения
Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется принять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 Общие термины
3.1.1 бессеточные численные методы: Класс методов для решения физико-механических задач о движении материального континуума, в которых не применяется построение расчетных сеток, а моделирование происходит за счет исследования взаимодействий условных частиц, для которых определена интегральная или иная математическая процедура восстановления полей физических параметров континуума по текущему состоянию множества частиц. en meshless methods
3.1.2 вихревые численные методы: Подкласс бессеточных численных методов (3.1.1) для решения задач гидродинамики, основанный на непосредственном лагранжевом моделировании эволюции поля завихренности с использованием интегральной процедуры восстановления кинематических и динамических полей движущейся несжимаемой жидкости. en vortex methods
3.1.3 мезоскопические численные методы: Подкласс бессеточных численных методов (3.1.1), основанный на промежуточном представлении о континууме как молекулярном веществе и сплошной среде. en mesoscopic methods
3.1.4 численные методы гидродинамики сглаженных частиц: Подкласс бессеточных численных методов (3.1.1) для моделирования движений сплошной среды на основе дискретного представления множеством условно материальных частиц с ядром сглаживания (3.4.1). en smoothed particle hydrodynamics
3.1.5 критерий Куранта-Фридрихса-Леви: Необходимое условие устойчивости явного численного решения некоторых дифференциальных уравнений в частных производных. Примечание - В рамках бессеточных численных методов моделирования (3.1.1) имеет смысл необходимого ограничения на величину шага по времени. en Courant-Friedrichs-Lewy condition

3.2 Вихревые численные методы
3.2.1 формула Био-Савара: Интегральное представление вектора соленоидального поля скорости через его ротор в безграничном пространстве (приведено в приложении А) [1]. en Bio-Savart law
3.2.2 закон эволюции завихренности: Получается из уравнения Навье-Стокса в результате применения оператора ротор (приведено в приложении А) [1]. en vorticity equation
3.2.3 вихревой элемент: Заданное финитное распределение завихренности, локализованное в окрестности точки пространства. Суперпозиция множества вихревых элементов служит для аппроксимации поля завихренности. en vortex element
3.2.4 циркуляция вихревого элемента (напряженность вихревого элемента): Интеграл от поля завихренности элемента по пространству (приведено в приложении А). en circulation; strength
3.2.5 индуцируемая вихревым элементом скорость: Поле скорости, вычисленное по формуле Био-Савара (3.2.1) для заданного вихревого элемента (3.2.3) (приведено в приложении А). en velocity field induced by the vortex
3.2.6 точечный вихрь (линейный вихрь): Разновидность вихревого элемента (3.2.3) в плоскопараллельных течениях - сингулярно сосредоточенное в точке распределение завихренности (соответственно в трехмерном пространстве - прямолинейная бесконечная вихревая нить) [8]. en point vortex
3.2.7 вихревая частица: Вихревой элемент (3.2.3) с осесимметричным или сферически симметричным распределением завихренности относительно точки локализации (приведено в приложении А) [7]. en vortex particle
3.2.8 функция обрезания частицы: Определяет структуру распределения завихренности в вихревой частице (3.2.7) (приведено в приложении А). en cutoff function
3.2.9 размер ядра частицы: Зависящий от размерности пространства коэффициент в формуле распределения завихренности в вихревой частице (3.2.8) (приведено в приложении А). en core size
3.2.10 ядро скорости частицы: Определяется по интегральной формуле через функцию обрезания частицы (3.2.8) и служит для вычисления составляющей поля скорости жидкости, индуцированной вихревой частицей (3.2.7) (приведено в приложении А). en velocity kernel
3.2.11 точечный вортон: Сингулярное распределение завихренности в трехмерном пространстве, сосредоточенное в точке локализации (приведено в приложении А) [2]. en point vorton
3.2.12 вихревой отрезок: Прямолинейный отрезок вихревой линии, индуцирующий поле скорости в соответствии с модифицированной формулой Био-Савара (приведено в приложении А) [3]. en vortex segment
3.2.13 вихревая рамка: Замкнутая вихревая линия, состоящая из нескольких (обычно из четырех) вихревых отрезков (3.2.9) [3]. en vortex frame
3.2.14 вихревой домен: Определенный для двумерных (плоскопараллельных и осесимметричных) течений вихревой элемент (3.2.3), форма и ширина которого не являются фиксированными, а вычисляются с учетом локального распределения соседних доменов и близости поверхности обтекаемых тел. Перемещение вихревого домена относительно жидкости происходит с диффузионной скоростью (3.2.15) [4], [5]. en vortex domain
3.2.15 диффузионная скорость: Вектор, характеризующий перенос завихренности в вязкой жидкости (приведено в приложении А). en diffusion velocity
3.2.16 радиус дискретности: Характеризует размер области вокруг сингулярного вихревого элемента (3.2.3), внутри которой постулируется линейное распределение азимутальной скорости, убывающее до нуля в центре области [8]. en discrete radius
3.2.17 ремешинг: Специальная процедура [7] перераспределения суммарной завихренности в лагранжевых частицах с использованием вспомогательной декартовой сетки. en remeshing
3.2.18 метод дискретных вихрей (МДВ): Бессеточный вихревой численный метод (3.1.2) моделирования двумерных и трехмерных течений идеальной (невязкой) несжимаемой жидкости. Основан на представлении вихревого поля набором вихревых элементов (3.2.3), которые перемещаются со скоростью жидкости
Для просмотра документа целиком скачайте его >>>
Нормы из информационного банка "Строительство":
Пожарные нормы:
ГОСТы:
Счетчики:
Политика конфиденциальности
Copyright 2020 - 2022 гг. RuNormy.RU. All rights reserved.
При использовании материалов сайта активная гипер ссылка  обязательна!