RuNormy.RU
Untitled Page
RuNormy.RU
Untitled Page
"ГОСТ Р ИСО 18437-3-2014. Национальный стандарт Российской Федерации. Вибрация и удар. Определение динамических механических свойств вязкоупругих материалов. Часть 3. Метод изгибных колебаний консольно закрепленного образца"
Скачать текст бесплатно в формате MS Word
Поделитесь данным материалом с друзьями:

Скачать
Утвержден и введен в действие
Приказом Федерального агентства
по техническому регулированию
и метрологии
от 24 октября 2014 г. N 1425-ст

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВИБРАЦИЯ И УДАР

ОПРЕДЕЛЕНИЕ ДИНАМИЧЕСКИХ МЕХАНИЧЕСКИХ СВОЙСТВ
ВЯЗКОУПРУГИХ МАТЕРИАЛОВ

ЧАСТЬ 3

МЕТОД ИЗГИБНЫХ КОЛЕБАНИЙ КОНСОЛЬНО ЗАКРЕПЛЕННОГО ОБРАЗЦА

Mechanical vibration and shock. Characterization of the
dynamic mechanical properties of visco-elastic materials.
Part 3: Cantilever shear beam method

ISO 18437-3:2005
Mechanical vibration and shock - Characterization of the
dynamic mechanical properties of visco-elastic materials -
Part 3: Cantilever shear beam method
(IDT)

ГОСТ Р ИСО 18437-3-2014

ОКС 17.160

Дата введения
1 декабря 2015 года

Предисловие

1. Подготовлен Открытым акционерным обществом "Научно-исследовательский центр контроля и диагностики технических систем" (АО "НИЦ КД") на основе собственного аутентичного перевода стандарта, указанного в пункте 4.
2. Внесен Техническим комитетом по стандартизации ТК 183 "Вибрация, удар и контроль технического состояния".
3. Утвержден и введен в действие Приказом Федерального агентства по техническому регулированию и метрологии от 24 октября 2014 г. N 1425-ст.
4. Настоящий стандарт является идентичным по отношению к международному стандарту ИСО 18437-3:2005 "Вибрация и удар. Определение динамических механических свойств вязкоупругих материалов. Часть 3. Метод изгибных колебаний консольно закрепленного образца" (ISO 18437-3:2005 "Mechanical vibration and shock - Characterization of the dynamic mechanical properties of visco-elastic materials - Part 3: Cantilever shear beam method").
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации и межгосударственные стандарты, сведения о которых приведены в дополнительном Приложении ДА.
5. Введен впервые.

Правила применения настоящего стандарта установлены в ГОСТ Р 1.0-2012 (раздел 8). Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (gost.ru).

Введение

Вязкоупругие материалы широко используются в разных системах, в частности для снижения вибрации в конструкциях посредством потери энергии (демпфирования) или изоляции компонентов и в акустических приложениях, связанных с преобразованием, передачей и поглощением энергии. Для оптимального функционирования таких систем зачастую необходимо, чтобы их элементы обладали заданными динамическими свойствами. Энергетические потери, имеющие место на межмолекулярном уровне, могут быть измерены через запаздывание между деформацией и напряжением в материале. Вязкоупругие свойства (модуль упругости и коэффициент потерь) большинства материалов зависят от частоты, температуры и амплитуды деформации. Выбор материала для каждого конкретного применения определяет рабочие характеристики системы. Настоящий стандарт устанавливает один из методов измерения динамических свойств вязкоупругих материалов - метод изгибных колебаний консольно закрепленного образца. Этот метод предполагает линейность поведения систем при малых амплитудах деформаций.

1. Область применения

Настоящий стандарт устанавливает метод изгибных колебаний консольнозакрепленного образца для определения в лабораторных условиях динамических механических свойств эластичных материалов, используемых в виброизоляторах. Особенностью метода является крепление к концам образца специальных установочных блоков, предотвращающих его угловые движения в устройствах зажима и появление связанных с таким движением ошибок. Диапазон частот измерений в соответствии с данным методом - от долей герца до приблизительно 20 кГц.
Настоящий стандарт распространяется на упругие материалы, используемые в виброизоляторах с целью уменьшения:
a) передачи вибрации от машин, сооружений, транспорта, которая впоследствии может излучаться в виде звуковых волн в окружающую среду (воздух, жидкость);
b) передачи низкочастотной вибрации, способной (если уровень вибрации достаточно высок) негативно воздействовать на людей, сооружения или чувствительное оборудование;
Полученные в результате измерений результаты могут быть использованы в целях:
- проектирования эффективных виброизоляторов;
- выбора оптимального материала для виброизолятора;
- теоретических расчетов передачи вибрации через виброизоляторы;
- обеспечения необходимой информацией при изготовлении продукции;
- предоставления необходимой информации предприятиям-изготовителям и поставщикам;
- контроля качества продукции.
Условием применимости метода измерений является линейность динамического поведения виброизолятора. Такой виброизолятор может включать в себя упругие элементы с нелинейной характеристикой зависимости прогиба от статической нагрузки при условии, что под данной статической нагрузкой все эти элементы демонстрируют линейность отклика при воздействиях малых амплитуд.
Измерения с использованием метода, установленного настоящим стандартом, проводят в диапазоне частот, охватывающем одну или две декады, при разных значениях температуры материала. Применение принципа температурно-временной суперпозиции позволяет затем распространить полученные результаты измерений на гораздо более широкий диапазон частот (обычно от 10-3 до 109 Гц для опорного значения температуры), чем тот, в котором реально проводят измерения при данной температуре.
Примечание. В настоящем стандарте под динамическими механическими свойствами понимают функциональные зависимости основных параметров, характеризующих упругие свойства материала, таких как комплексный модуль Юнга, от температуры, частоты и при необходимости от предварительного нагружения.

2. Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ИСО 472 Пластмассы. Словарь (ISO 472, Plastics - Vocabulary)
ИСО 2041 Вибрация, удар и контроль состояния. Словарь (ISO 2041, Mechanical vibration, shock and condition monitoring - Vocabulary)
ИСО 4664-1 Резина вулканизированная или термопластичная. Определение динамических свойств. Часть 1. Общее руководство (ISO 4664-1, Rubber, vulcanized or thermoplastic - Determination of dynamic properties - Part 1: General guidance)
ИСО 6721-1 Пластмассы. Определение механических свойств при динамическом нагружении. Часть 1. Общие принципы (ISO 6721-1, Plastics - Determination of dynamic mechanical properties - Part 1: General principles)
ИСО 10112 Демпфирующие материалы. Графическое представление комплексных модулей упругости (ISO 10112, Damping materials - Graphical presentation of the complex modulus)
ИСО 10846-1 Вибрация и акустика. Измерения виброакустических передаточных характеристик упругих элементов в лабораторных условиях. Часть 1. Общие принципы и руководство (ISO 10846-1, Acoustics and vibration - Laboratory measurement of vibro-acoustic transfer properties of resilient elements - Part 1: Principles and guidelines)
ИСО 23529 Каучук и резина. Общие процедуры приготовления и кондиционирования образцов для физических методов испытаний (ISO 23529, Rubber - General procedures for preparing and conditioning test pieces for physical test methods)

3. Термины и определения

В настоящем стандарте применены термины по ИСО 472, ИСО 2041, ИСО 4664-1, ИСО 6721-1, ИСО 10112, ИСО 10846-1 и ИСО 23529, а также следующие термины с соответствующими определениями.
3.1. модуль Юнга (Young modulus) E*: Отношение нормального напряжения (при сжатии или растяжении материала) к вызывающей его нормальной деформации или относительному изменению длины.
Примечание 1. Выражают в паскалях.
Примечание 2. Для вязкоупругих материалов модуль Юнга E* является комплексной величиной, включающей в себя действительную E' и мнимую E" части.
Примечание 3. С физической точки зрения действительная часть модуля Юнга характеризует энергию, накапливаемую при деформации, а мнимая часть - возникающие при этом потери энергии (см. 3.2).

3.2. коэффициент потерь (loss factor): Отношение мнимой части модуля Юнга для данного материала к его действительной части (т.е. тангенс фазового угла комплексного модуля упругости).
Примечание. При наличии потерь энергии в материале изменения механического напряжения запаздывают относительно механической деформации на фазовый угол . Коэффициент потерь равен .

3.3. температурно-временная суперпозиция (time-temperature superposition): Принцип эквивалентности для вязкоупругих материалов величин времени и температуры, согласно которому кривую, построенную по данным при одном значении температуры, распространяют на данные, соответствующие другой температуре, посредством сдвига соответствующей кривой вдоль оси частот.
3.4. коэффициент смещения (shift factor): Значение сдвига вдоль логарифмической (по основанию 10) оси частот, при котором происходит совмещение кривой характеристики для одного постоянного значения температуры с кривой для другого постоянного значения температуры.
3.5. температура стеклования (glass transition temperature) Tg: Температура, соответствующая точке излома на графике зависимости удельного объема от температуры, при которой полимер переходит из высокоэластичного в стеклообразное состояние.
Примечание 1. Выражают в градусах Цельсия.
Примечание 2. Температура стеклования является характеристикой свойств материала. Ее обычно определяют по точке излома функциональной зависимости удельной теплоемкости от температуры.
Примечание 3. Tg не является температурой, при которой наблюдается максимум коэффициента потерь. Максимум потерь приходится на температуру, значение которой превышает Tg и зависит от частоты возбуждаемых колебаний.

3.6. упругий материал (resilient material): Вязкоупругий материал, предназначенный для ослабления передачи вибрации, удара или шума.
Примечание. Ослабление может осуществляться упругим материалом, работающим в режиме растяжения, сжатия, кручения, сдвига или в смешанном режиме.
Для просмотра документа целиком скачайте его >>>
Нормы из информационного банка "Строительство":
Пожарные нормы:
ГОСТы:
Счетчики:
Политика конфиденциальности
Copyright 2020 - 2022 гг. RuNormy.RU. All rights reserved.
При использовании материалов сайта активная гипер ссылка  обязательна!